Primal-Dual Methods for Solving Infinite-Dimensional Games

نویسندگان

  • Pavel Dvurechensky
  • Yurii Nesterov
  • Vladimir G. Spokoiny
چکیده

In this paper we show that the infinite-dimensional differential games with simple objective functional can be solved in a finite-dimensional dual form in the space of dual multipliers for the constraints related to the end points of the trajectories. The primal solutions can be easily reconstructed by the appropriate dual subgradient schemes. The suggested schemes are justified by the worst-case complexity analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank

We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Implementation of infinite-dimensional interior-point method for solving multi-criteria linear-quadratic control problem

We describe an implementation of an infinite-dimensional primal-dual algorithm based on the Nesterov-Todd direction. Several applications to both continuous and discrete-time multi-criteria linear-quadratic control problems and linear-quadratic control problem with quadratic constraints are described. Numerical results show a very fast convergence (typically, within 3-4 iterations) to optimal s...

متن کامل

Double smoothing technique for infinite-dimensional optimization problems with applications to optimal control

In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. We show th...

متن کامل

Some new results on semi fully fuzzy linear programming problems

There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2015